References
Alexander, M. J., & Dunkerton, T. J. (1999). A spectral parameterization of mean-flow forcing due to breaking gravity waves. Journal of the Atmospheric Sciences, 56(24), 4167-4182. <https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2>`_.
Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, 112(473), 677–691, doi: 10.1002/qj.49711247307.
Betts, A. K. and Miller, M. J., 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 112(473), 693–709, doi: 10.1002/qj.49711247308.
Byrne, M. P. and O’Gorman, P. A., 2013: Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium the- ory and idealized simulations, J. Climate, 26, doi.
Frierson, D. M. W., Held, I. M., and Zurita-Gotor, P., 2006: A Gray Radiation Aquaplanet Moist GCM, Part 1: Static Stability and Eddy Scales, J. Atmos. Sci., 63, 2548–2566, doi.
Frierson, D, 2007: The Dynamics of Idealized Convection Schemes and Their Effect on the Zonally Averaged Tropical Circulation. Journal of the Atmospheric Sciences, 64(6), 1959–1976, doi: 10.1175/JAS3935.1.
Geen, R., Czaja, A., and Haigh, J. D., 2016: The effects of increasing humidity on heat transport by extratropical waves, Geophys. Res. Lett., 43, 8314–8321, doi.
Gierasch, P.J., Ingersoll, A.P., Banfield, D., Ewald, S.P., Helfenstein, P., Simon-Miller, A., Vasavada, A., Breneman, H.H., Senske, D.A. and Team, G.I., 2000: Observation of moist convection in Jupiter’s atmosphere. Nature, 403(6770), 628–630. doi: 10.1038/35001017.
Jucker, M. and Gerber, E. P., 2017: Untangling the Annual Cycle of the Tropical Tropopause Layer with an Idealized Moist Model. Journal of Climate, 30(18), 7339–7358, doi: 10.1175/JCLI-D-17-0127.1.
O’Gorman, P. and Schneider, T., 2008: The Hydrological Cycle over a Wide Range of Climates Simulated with an Idealized GCM. Journal of Climate, 21(15), 3815–3832, doi: 10.1175/2007JCLI2065.1.
Large, W. G., and Yeager, S., 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Technical Report; University Corporation for Atmospheric Research, No. NCAR/TN-460+STR, doi: 10.5065/D6KK98Q6.
Manabe, S. 1969: Climate and the Ocean Circulation: I. The Atmopsheric Circulation and the Hydrology of the Earth’s Surface. Mon. Wea. Rev. 97(11), 739–774, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2
Manners, J. and Edwards, J. M. and Hill, P. and Thelen, J.-C., 2015: SOCRATES (Suite Of Community RAdiative Transfer codes based on Edwards and Slingo) Technical Guide. Met Office, UK. Available at: https://code.metoffice.gov.uk/trac/socrates.
Mlawer, E. J. and Taubman, S. J. and Brown, P. D. and Iacono, M. J. and & Clough, S. A., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14) 16663–16682, doi: 10.1029/97JD00237.
Moorthi, S., Suarez, M. J., 1992: Relaxed Arakawa-Schubert. A Parameterization of Moist Convection for General Circulation Models. Monthly Weather Review, 120(6), 978–1002, doi: 10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2
Pierrehumbert, R. T. (1986, September). An essay on the parameterization of orographic gravity wave drag. In Proc. Seminar/Workshop on Observation, Theory and Modeling of Orographic Effects (Vol. 1, pp. 251-282).
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D., 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114, doi.
Saulière, J., Brayshaw, D. J., Hoskins, B., & Blackburn, M. (2012): Further investigation of the impact of idealized continents and SST distributions on the Northern Hemisphere storm tracks. J. Atmos. Sci., 69(3), 840-856, doi: 10.1175/JAS-D-11-0113.1.
Schneider, T., Walker, C. C., 2006: Self-Organization of Atmospheric Macroturbulence into Critical States of Weak Nonlinear Eddy–Eddy Interactions. J. Atmos. Sci., 63(6), 1569–1586, doi: 10.1175/JAS3699.1.
Schneider, T. and Liu, J., 2009: Formation of jets and equatorial superrotation on Jupiter, J. Atmos. Sci., 66, 579–601, doi.
Thomson, S. I. and Vallis, G. K., 2019. Hierarchical Modeling of Solar System Planets with Isca. Atmosphere, 10 (12), 803, doi: 10.3390/atmos10120803.
Neale, R. B. and Hoskins, B. K., 2000. A standard test for AGCMs including their physical parametrizations: I: the proposal Atmospheric Science Letters, 1(2), 101-107
Merlis, Timothy M., et al. 2013. Hadley circulation response to orbital precession. Part I: Aquaplanets. Journal of Climate, 26(3), 740-753
Russell, Gary L., James R. Miller, and Lie-Ching Tsang. 1985. Seasonal oceanic heat transports computed from an atmospheric model. Dynamics of atmospheres and Oceans 9(3), 253-271.
Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press. doi: 10.1017/9781107588417.
Vallis, G. K. and Colyer, G. and Geen, R. and Gerber, E. and Jucker, M. and Maher, P. and Paterson, A. and Pietschnig, M. and Penn, J. and Thomson, S. I., 2018: Isca, v1.0: a framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geoscientific Model Development, 11(3), 843-859, doi: 10.5194/gmd-11-843-2018.
Williams, P. D., 2011: The RAW Filter: An Improvement to the Robert-Asselin Filter in Semi-Implicit Integrations. Mon. Wea. Rev. 139(6), 1996–-2007, doi: 10.1175/2010MWR3601.1.
Yano, J. and Plant, R., 2016: Generalized convective quasi-equilibrium principle. Dynamics of Atmospheres and Oceans, 73, 10–33, doi: 10.1016/j.dynatmoce.2015.11.001.